
Wildfire Detection enabled Camera
Jetson TX2 GPU accelerated

Nikos Georgis

17-Feb-2018

Motivation

• The 2017 California wildfire season was the most destructive wildfire
season on record.

• Early detection of ignition can result in faster response by fire
agencies therefore minimizing destruction.

• San Diego, CA residents were invited to watch strategically installed
cameras and report fires:
• Public can use webcams to watch for wildfires across San Diego County

• This is a task that could potentially be automated.

• NVIDIA Jetson TX2 is an ideal platform for this kind of applications.

Goals

• Design an Intelligent Camera capable of
• Accurate and fast wildfire detection.
• Accurate even when minimal amount of training data is available.
• Operate in real time, processing multiple video streams.
• Use the TensorRT model optimizer.

• Educational value of this project
• Demonstrate end-to-end pipeline: from idea to implementation.
• Show how transfer learning can be used in real projects.
• Show how Tensorflow can be used to generate UFF models.
• Use NVIDIA profiling tools to measure performance and identify bottlenecks.

Proposed solution

• Able to operate standalone.
• Battery rechargeable by

solar panels.
• Real-time processing

• Process video streams from
multiple local cameras.

• Wildfire and smoke detection.

• Always connected
• 4G/LTE connectivity.
• Send alarms in real-time.

• Rigid enclosure
• Water proof.
• Heat proof.

Photoshop by Anthony G

High level block diagram

?

ALARM

Software Implementation

• Development on a NVIDIA GTX1080 desktop
• Used Tensorflow 1.3 for training.

• Jupyter notebook capturing the training and test phases:

• https://github.com/ngeorgis/ca-fire-detector/blob/master/fire-detection-
jetson-save-ca.ipynb

• Deployment phase
• Jetson TX2

• JetPack 3.2

• TensorRT 3
• Linux tegra-ubuntu 4.4.38-tegra #1 SMP PREEMPT Fri Dec 1 06:08:28 PST

2017 aarch64 aarch64 aarch64 GNU/Linux

https://github.com/ngeorgis/ca-fire-detector/blob/master/fire-detection-jetson-save-ca.ipynb

CNN Fire detection
Although an advanced CNN or even RNN (LSTM or GRU) could be used for sophisticated fire detection, in this project focus
was on robustness and speed.

A relatively simple but deep enough CNN was found to be suitable for this purpose.

• A number of classes were evaluated
• Fire, Smoke, Safe
• Fire, Safe

• Several models were evaluated
• VGG16_model
• VGG19_model
• InceptionV3_model
• Xception_model
• ResNet50_model

Finally, a two-class Fire/Safe VGG-19 was used.

Transfer learning

• The amount of training data required to train VGG-19 is difficult to be captured and manually
annotated.

• Pretrained models are available with significant accuracy for many classes similar to the two
classes used here: Fire/Safe

• The decision was made to freeze the base model and only trained the last layers.

• Total params: 20,025,410

• Trainable params: 1,026

• Non-trainable params: 20,024,384

• Resulted in an accurate fire detector that can generalize well.

• Reference: Udacity AIND Dog Project, Transfer Learning

https://github.com/udacity/dog-project
http://cs231n.github.io/transfer-learning/

Accuracy and loss graphs

Training data

• Less than 1000 training images
were used.
• Training data

• Validation data

• Test data

• Reference : How to create a deep learning
dataset using Google Images

https://www.pyimagesearch.com/2017/12/04/how-to-create-a-deep-learning-dataset-using-google-images/

From Tensorflow to TensorRT and Jetson TX2

• Details in https://github.com/ngeorgis/ca-fire-
detector/blob/master/fire-detection-jetson-save-ca.ipynb
• Section: Convert the Keras / TF model to something that Jetson TX2

understands

• Freeze the TF graph

• Convert to UFF
• convert-to-uff tensorflow --input-file frozen_fire_detector.pb –l

• convert-to-uff tensorflow -o fire_detector.uff --input-file

frozen_fire_detector.pb -O "dense_1/Softmax"

https://github.com/ngeorgis/ca-fire-detector/blob/master/fire-detection-jetson-save-ca.ipynb

From Tensorflow to TensorRT and Jetson TX2
• Deploy using minor modifications to

• sample TensorRT-3.0.0\samples\sampleUffMNIST\sampleUffMNIST.cpp

Status of hardware development

• Jetson TX2 acquired.

• No carrier board yet for Fire Detector miniaturization.

• Mini-ITX enclosure.

• Raspberry Pi cameras
• Can be accessed over IP using NVIDIA Gstreamer.

• AVC packets over IP.

• NVDec decoding pipeline.

• 3D printer M12 mount -> M12 -> CS adapter -> Sony lenses

• No waterproofing or recharging battery effort yet.

Current hardware status

Experimental results

• Class: Safe

Experimental results

• Class: Fire

Profiling results
• Profiled using nvprof on Jetson TX2

• Clocks were set to high using nvpmodel and jetson-clock.sh

• Can process over 15 fps of HD video stream from IP cameras.

• Average over 10 runs is 65.1052 ms

• Mainly cycles spent on fusedConvolutionReluKernel and cudnn_winograd_128x128

• Used the NVIDIA System profiler
• Remote attach and profile fire detection pipeline

• Opportunity to overlap transfers and compute - TBD

Under development

• Add dropout layers and re-train VGG-19

• Drop the dropout for inference
• TensorRT PB -> UFF issue
• Need to understand how to manipulate TF graph and remove dropouts
• Open issue in GitHub project: https://github.com/ngeorgis/ca-fire-

detector/issues/1

• Better training data.

• Waterproof enclosure.

• Add solar panel / battery / more cameras.

• Optimize pipeline and deploy

https://github.com/ngeorgis/ca-fire-detector/issues/1

Conclusions

• Successful design of a wildfire early detection system using deep learning.

• Better to have intelligent locally so that wildfire cameras can process in
real-time and respond faster.

• NVIDIA Jetson TX2 ideal for this task.

• Amazing application of transfer learning to make this fire detector work
with minimal training data.

• Successful deployment using the NVIDIA Jetson TX2 tools.

• Implementation of the end-to-end pipeline
• Idea -> Keras / Tensorflow -> Freeze to pb -> pf to uff -> TensorRT -> TX2 inference

• Profiling of the complete pipeline using NVIDIA tools.

Acknowledgements

• Udacity Artificial Intelligent Nano Degree for teaching me deep
learning and introducing me to the powerful transfer learning concept
and how to freeze layers properly.

• Anthony and Elias, junior data scientists, for assistance including
training data collection.

https://www.udacity.com/ai

https://www.udacity.com/ai

