Wildfire Detection enabled Camera
Jetson TX2 GPU accelerated

Nikos Georgis
17-Feb-2018

NVIDIA® Jetson™ Developer Challenf®

Motivation

e The 2017 California wildfire season was the most destructive wildfire
season on record.

* Early detection of ignition can result in faster response by fire
agencies therefore minimizing destruction.

e San Diego, CA residents were invited to watch strategically installed
cameras and report fires:

* Public can use webcams to watch for wildfires across San Diego County
* This is a task that could potentially be automated.
* NVIDIA Jetson TX2 is an ideal platform for this kind of applications.

Goals

* Design an Intelligent Camera capable of
* Accurate and fast wildfire detection.
* Accurate even when minimal amount of training data is available.
* Operate in real time, processing multiple video streams.
* Use the TensorRT model optimizer.

e Educational value of this project
 Demonstrate end-to-end pipeline: from idea to implementation.
* Show how transfer learning can be used in real projects.
* Show how Tensorflow can be used to generate UFF models.
* Use NVIDIA profiling tools to measure performance and identify bottlenecks.

Proposed solution

* Able to operate standalone.

* Battery rechargeable by
solar panels.

e Real-time processing

* Process video streams from
multiple local cameras.

* Wildfire and smoke detection.

e Always connected
* 4G/LTE connectivity.
* Send alarms in real-time.

Rigid enclosure ;AR R N
e Water proof.) - - | Photoshop by Anthony G
* Heat proof.

High level block diagram

Software Implementation

* Development on a NVIDIA GTX1080 desktop

* Used Tensorflow 1.3 for training.
* Jupyter notebook capturing the training and test phases:

* https://github.com/ngeorgis/ca-fire-detector/blob/master/fire-detection-
jetson-save-ca.ipynb

* Deployment phase
* Jetson TX2
e JetPack 3.2

* TensorRT 3

* Linux tegra-ubuntu 4.4.38-tegra #1 SMP PREEMPT Fri Dec 1 06:08:28 PST
2017 aarch64 aarch64 aarch64 GNU/Linux

https://github.com/ngeorgis/ca-fire-detector/blob/master/fire-detection-jetson-save-ca.ipynb

CNN Fire detection

Although an advanced CNN or even RNN (LSTM or GRU) could be used for sophisticated fire detection, in this project focus
was on robustness and speed.
A relatively simple but deep enough CNN was found to be suitable for this purpose.

* A number of classes were evaluated
* Fire, Smoke, Safe
* Fire, Safe

* Several models were evaluated
* VGG16_model
* VGG19 model
* InceptionV3_model
e Xception_model
* ResNet50 model

Finally, a two-class Fire/Safe VGG-19 was used.

U0d GY20]q
d-gxo01q

AU 6YI0[q

UAUOD GI0[q

UAUOD GI0[q

UAUOD H20[q

UAUOD H20[q

UATOD $20[q
-d afeiaae [eqo[3

UAUOD £20[q

AUOD £Y00]q
*U09 £Y20[q
d exoolq

UAU0D Z[P0[q

= g
g 2
an [,
I s
[=]
=
=

UAUOD [20[q

AU0D g20[q
d 7p01q

z 100
T o0

1 00
7 100

Transfer learning

* The amount of training data required to train VGG-19 is difficult to be captured and manually
annotated.

* Pretrained models are available with significant accuracy for many classes similar to the two
classes used here: Fire/Safe

* The decision was made to freeze the base model and only trained the last layers.
* Total params: 20,025,410
* Trainable params: 1,026
* Non-trainable params: 20,024,384

* Resulted in an accurate fire detector that can generalize well.

e Reference: Udacity AIND Dog Project, Transfer Learning

5'3 In [12]: # Freeze the Layers which you don't want to train.
8 for layer in base model.layers:
n layer.trainable = False

https://github.com/udacity/dog-project
http://cs231n.github.io/transfer-learning/

Accuracy and loss graphs

model accuracy model loss

— train 1 train

0.95 1 test - ' test

e

]
(=]
o / A
S 0.80 S 0.6
[1+]
0.75 0.1
0.70
0.2
0.65
T T
0 2 4 6 8 0 2 4 6

Training data

* Less than 1000 training images

were used.
* Training data

* Validation data

e Test data

 Reference : How to create a deep learning

dataset using Google Images

594da826c1548.ima
9ejpg

Berry-Fire-Aug-15-2
016-NPS-photo.jpg

ggkdsf20St (1).jpg

images (9).jpg

T s

595d761251d6a.ima 596a7a219b5c3.ima
gejpg gejpg

blaze.jpg Cedar-Fire-740-pm-
PDT-August-17-201
6-1200x800,jpg

e

great_smoky_mtns_ hornet-mountain-lo
np_chimney_tops_fi okout-1.jpg
re_2016_nps_photo_

warren_bielenber...

ﬁ

images (10).jpg images (11).jpg

2017_07_23-20.39.32
.732-CDT.jpeg

il

download (1).jpg

iEmt8fN.jpg

\

images (12).jpg

39349FEDOD000578- 081115-kgo-jerusale 92692.ngsversion.0.
3828379-Up_in_smo m-fired-img.jpg adapt.1900.1.jpg
ke_Plumes_of_white

_smoke_rise_from...

download (2).jpg download.jpg DT3CYuMV4AAKWA
Mjpg

3\
i

images (1).jpg images (2).jpg images (3).jpg

images (13).jpg images (14).jpg images (15).jpg

150717-s0cal-fire-02
_68731f7a306e38124
91cf0cbe89dfac3.nb
cnews-ux-2880-10...

7"’ T

firel.jpg

images (4).jpg

images (16).jpg

https://www.pyimagesearch.com/2017/12/04/how-to-create-a-deep-learning-dataset-using-google-images/

From Tensorflow to TensorRT and Jetson TX2

* Details in https://github.com/ngeorgis/ca-fire-
detector/blob/master/fire-detection-jetson-save-ca.ipynb

 Section: Convert the Keras / TF model to something that Jetson TX2
understands

* Freeze the TF graph
* Convert to UFF

* convert-to-uff tensorflow --input-file frozen fire detector.pb -1

* convert-to-uff tensorflow -o fire detector.uff --input-file
frozen fire detector.pb -0 "dense 1/Softmax"

https://github.com/ngeorgis/ca-fire-detector/blob/master/fire-detection-jetson-save-ca.ipynb

From Tensorflow to TensorRT and Jetson TX2

* Deploy using minor modifications to
e sample TensorRT-3.0.0\samples\sampleUffMNIST\sampleULffMNIST.cpp

auto fileName = locateFile("fire_detector.uff");

std::cout << fileName << std::endl;
int maxBatchSize = 1;
auto parser = createUffParser();

/* Register tensorflow input */ /
parser->registerInput("input 5", DimsCHW(3, 224, 224));

parser->registerOutput("dense 1/Softmax");

ICudaEngine* engine = loadModelAndCreateEngine(fileName.c_str(), maxBatchSize, parser);
if (!engine)
RETURN_AND LOG(EXIT FATLURE, ERROR, "Model load failed");

/#* we need to keep the memory created by the parser */
parser->destroy();

execute(*engine);
engine->destroy();

shutdownProtobufLibrary();
return EXIT SUCCESS;

Status of hardware development

* Jetson TX2 acquired.
* No carrier board yet for Fire Detector miniaturization.
* Mini-ITX enclosure.

e Raspberry Pi cameras
* Can be accessed over IP using NVIDIA Gstreamer.
* AVC packets over IP.
* NVDec decoding pipeline.
* 3D printer M12 mount -> M12 -> CS adapter -> Sony lenses

* No waterproofing or recharging battery effort yet.

Current hardware status

Experimental results

e Class: Safe

Looking good: Safe
Looking good: Safe

1000
1200
1400
1600

750 1000 1250

1800 e e
0 500 1000 1500 2000 2500

Experimental results

* Class:

ALARM:
0

100
200
300
400
500

600

Fire

Detected Fire

ALARM: Detected Fire
0

100
200
300
400
500

600

ALARM: Detected Fire

700

0 200 400 600 800 1000 1200 1400

Profiling results

* Profiled using nvprof on Jetson TX2

* Clocks were set to high using nvpmodel and jetson-clock.sh
e Can process over 15 fps of HD video stream from IP cameras.

* Average over 10 runs is 65.1052 ms
* Mainly cycles spent on fusedConvolutionReluKernel and cudnn winograd 128x128

* Used the NVIDIA System profiler

* Remote attach and profile fire detection pipeline

=

AL SessaT A JE

* Opportunity to overlap transfers and compute - TBD

==3743== Profiling application: ../../bin/sample_uff_fire_detectoﬂ
==3743== Profiling result:
Type Time (%) Time Calls AV Min Max
GPU activities: 23.16% 2.1%217s 2315 94¢.9%4us 320ns 6€.4950ms
7.12% €74.20ms lee 4.0€1l5ms 1.3785ms 8.0820ms
2.57% 243.Z28ms 32 7.6024ms 2.6775ms 11.893ms
fused: :KpgkPtrWriter<float, int=1, int=2>, float, float,
float)
2.16% 204.12Zms 32 €.3788ms 2.6318ms 9.5032ms
fused: :KpgkPtrWriter<float, int=1l, int=2>, float, float,
float)
2.15% 203.34ms 30 €.7781lms 2.43%6ms 10.1Z1ms
fused: :EpgkPtrWriter<float, int=1l, int=1>, float, float,
float)
2.08% 196.%5ms 15 13.130ms 4.8¢léms 19.804ms
fused: :KpgkPtrWriter<float, int=1l, int=1>, float, float,
float)
1.78% 168.75ms 15 11.250ms 3.5%5%ms 27.%21ms
fused: :KpgkPtrWriter<float, int=1l, int=4>, float, float,
float)
1.77% 167.0%ms 15 11.13%ms 3.2848ms 19.074ms
fused: :KpgkPtrWriter<float, int=1, int=4>, float, float,

float)

Name

[CUDA memcpy HtoD]

trtwell scudnn winograd 128=x128 1dgl ldg4 mobile relu tileld48t nt
void fused::fusedConvolutionReluKernel<fused::SrcChwcPtr FltTex Re
int=7, int=5, int=1l, int=3, int=3, int=1, int=1>(fused::Convolutilic

void fused::fusedConvolutionReluEKernel<fused::SrcChwcPtr FltTex Re
int=4, int=8, int=1l, int=3, int=3, int=1, int=1>(fused::Convolutic

void fused::fusedConvolutionReluEKernel<fused::SrcChwcPtr FltTex Re
int=7, int=8, int=4, int=3, int=3, int=1, int=1> (fused::Conwvolutic

void fused::fusedConvolutionReluKernel<fused::SrcChwcPtr FltTex Re
int=7, int=6, int=8, int=3, int=3, int=1, int=1>(fused::Conwvolutic

void fused::fusedConvolutionReluKernel<fused::SrcChwcPtr FltTex Re
int=5, int=7, int=4, int=3, int=3, int=1, int=1>(fused::Conwvolutic

void fused::fusedConvolutionReluKernel<fused::SrcChwcPtr FltTex Re
int=2, int=5, int=2, int=3, int=3, int=1, int=1>(fused::Conwvolutic

Under development

e Add dropout layers and re-train VGG-19

* Drop the dropout for inference
* TensorRT PB -> UFF issue
* Need to understand how to manipulate TF graph and remove dropouts

* Open issue in GitHub project: https://github.com/ngeorgis/ca-fire-
detector/issues/1

* Better training data.

* Waterproof enclosure.

» Add solar panel / battery / more cameras.
* Optimize pipeline and deploy

https://github.com/ngeorgis/ca-fire-detector/issues/1

Conclusions

» Successful design of a wildfire early detection system using deep learning.

* Better to have intelligent locally so that wildfire cameras can process in
real-time and respond faster.

 NVIDIA Jetson TX2 ideal for this task.

 Amazing application of transfer learning to make this fire detector work
with minimal training data.

e Successful deployment using the NVIDIA Jetson TX2 tools.

* Implementation of the end-to-end pipeline
* |dea -> Keras / Tensorflow -> Freeze to pb -> pf to uff -> TensorRT -> TX2 inference

* Profiling of the complete pipeline using NVIDIA tools.

Acknowledgements

e Udacity Artificial Intelligent Nano Degree for teaching me deep
learning and introducing me to the powerful transfer learning concept
and how to freeze layers properly.

* Anthony and Elias, junior data scientists, for assistance including
training data collection.

https://www.udacity.com/ai Y ubACITY

https://www.udacity.com/ai

