TAMPERE
UNIVERSITY OF
TECHNOLOGY

TUT Embedded Smile Detector

NVIDIA Jetson Developer Challenge

NVIDIA.

Feb 2018

Tampere University of Technology

> Pedram Ghazi
> Saboktakin Hayati

> Heikki Huttunen

Table of contents

Table of contents
Table of Figures
Introduction

2. Implementation
2.1 Implementation
2.2 Workflow
2.3 Environment and libraries

3. Conclusion
4. References

5. Annexes
5.1 Images
5.2 links

N 6o o+~ b A~

N

Table of Figures

- Figure 2.1: Sequence diagram
- Figure 5.1: During the demo

- Figure 5.2: Hardware

1. Introduction

The original Idea was to extend facial expression recognition to people's lives in order to prevent
threatening behaviours .

Here we describe some possible use cases:

I. In an interview situation, the interviewee can be monitored to detect his moods and level
of stress during the interview. So, the interviewers can act accordingly to interviewee’s
feelings.

[I. Quantitative evaluation of depression.

lll. Customer satisfaction during test drive of a new car.

2. Implementation

2.1 Implementation

For implementing this system on an embedded device namely Jetson TX2 we have used
multithreading since computational overheads from different modules of the system would
cause inconsistency in the execution flow of the application. The main thread is responsible for
handling the communication between different threads and modules. The general flow of the
program could be explained as this: firstly we are grabbing frames in the main thread and share
them between all threads using a data structure which all threads have access to it. Secondly,
we are detecting faces in the captured frames and assigning coordinates of the detected faces
to the shared data structure. Then the main thread is retrieving the prediction results of smiles in
those coordinates form the smile detector thread. In the final step, we sketch the frame with the
prediction result added to it.

We have utilized a well-known training architecture Mobilenet (Howard, A.G. 2017.) with different
parameters and in the smile detector thread we are using it to predict smile probabilities.
Mobilenets (with alpha = 0.25, 0.5, 0.75, 1.0) are based on a streamlined architecture that uses
depth-wise separable convolutions to build light weight deep neural networks for mobile and
embedded vision applications. Adjustable hyper-parameter 'alpha’ allows the model builder to
choose the right sized model for their application based on the constraints of the problem.

Handling multiple faces for smile detection was carried out by accessing coordinates of
rectangles of detected faces in a frame by the smile detector thread and assigning smile
probabilities to each rectangle. So while sketching the frame we will be able to draw the
rectangle and the prediction result alongside each other.

The communication between different threads are asynchronous, so they do not need to be
available at the same time. Since all threads are running almost at the same pace, we have a
stable system which is able to draw approximately 18 frames ps.

2.2 Workflow

The current workflow of the application could be described as in the following sequence
diagram.

Controller Smile Recognition . AT
Thread Thread Grabber Face Detection Visualisation

Figure 2.1: Sequence diagram

2.3 Environment and libraries

TX2 jetson owner is Tampere university of technology, signal processing lab and they lent us
the device for this project. We also used Logitech webcam ¢920 as a camera.

Tools(libraries, apps, softwares) Version Explanation

Ubuntu 16.04 LTS Operating system-64 bit.
Python 2.712 Programming language.
OpenCV 24131 Library which is mainly use

for computer vision.

Keras 2.1.1 A neural network library.

Tensorflow 1.3.0 A library for dataflow
programming across a range
of tasks including machine
learning.

Numpy 1.11.0 A library for scientific
computing in python.

3. Conclusion

In conclusion, we gained the hands-on experience of implementing an idea from the scratch to a
working application.

As future works, we have plans as follows:
- Pretrain model with other datasets to make it more robust.
- Detecting other facial expressions than smiling.

- Consider experts' ideas to include diverse domain knowledge to make this application more
practical.

- Improve thread programming.

In the end, we would like to say thanks to our university teacher Heikki Huttunen for his support
during the project.

4. References

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. and Adam, H.,

2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861.

5. Annexes
5.1 Images

vokoscreen 2.4.0

nChallenge/Smile o
Vidiagtegra- ubuntu'~/W=tmn<hnuen;e/;mln betectors python
Python 0n2.7-conflg python3. s python-config
pythonz Bythons. conflg * pythond:on

python2, python

nv\ﬂ\nmtegra ubuntuy
LiveSnileDetector.py

~/3etsonchallenge/Snile Detectors pyti
nvidiagtegra-ubunty

RecognitionThread.py Recognitiomthresd.
/3etsonchallenge/Snile Detectors python Livebniledetector, P
Using TensorFlow ba(kend.
HIGHGUI ERROR:
2010-02-14 18:53:37.
561 AR has

C_s_crop

904386 1 tensorflow/strean Exe:umr/(uda/tuda gpu_e
o NUMA node, hardcoding to retar

3:27.944509: 1 tensor low/core/comnon_ runt tne/gpu/gpu_device. cc:s
55] Found device & with properties:

name: NVIDIA Tegra X2

o ZonchoryClockRate (GHz) 1.3005
SEaL menocy: o ama
Free nenor

3.3

2618
53:27.944574:

LT ELE

T tensorflow/core/connon_runtine/gpu/gpu_device.c

76] i
— az u 18:53:27.944608:
86] o

1 tensorflow/core/connon_runtine/gpu/gpu_device. c
2618-62-14 18:53:27. 944670: 1 sorﬂow/care/mmnn _runtine/gpu/gpu_device.cc:1
045] Creating Tensorrlow device (/9pu:0) -> (device: o, name: NVIDIA Tegra X2, p
Ii(bus id: 6000:60:00.0)

Figure 5.1: Creating the demo

Figure 5.2: Hardware

5.2 links

Link to the public repository: https://github.com/alitakin/JetsonChallenge

Link to the demo: https://www.youtube.com/watch?v=4JGatQOchFo

https://github.com/alitakin/JetsonChallenge
https://www.youtube.com/watch?v=4JGatQOchFo

